总体均值的区间估计
<- rnorm(36,80,5)
x t.test(x)
One Sample t-test
data: x
t = 91.933, df = 35, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
77.76681 81.27893
sample estimates:
mean of x
79.52287
str(t.test(x))
List of 10
$ statistic : Named num 91.9
..- attr(*, "names")= chr "t"
$ parameter : Named num 35
..- attr(*, "names")= chr "df"
$ p.value : num 2.49e-43
$ conf.int : num [1:2] 77.8 81.3
..- attr(*, "conf.level")= num 0.95
$ estimate : Named num 79.5
..- attr(*, "names")= chr "mean of x"
$ null.value : Named num 0
..- attr(*, "names")= chr "mean"
$ stderr : num 0.865
$ alternative: chr "two.sided"
$ method : chr "One Sample t-test"
$ data.name : chr "x"
- attr(*, "class")= chr "htest"
t.test(x) $ conf.int[1] #置信区间下限
[1] 77.76681
t.test(x) $ conf.int[2] #置信区间上限
[1] 81.27893
<- qt(0.975,35)*sd(x)/sqrt(36)
margin_of_error <- mean(x)-margin_of_error
ll <- mean(x)+margin_of_error
up <- c(ll,up)
ci ci
[1] 77.76681 81.27893
<- rnorm(36,80,5)
x t.test(x)
One Sample t-test
data: x
t = 109.62, df = 35, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
79.05487 82.03822
sample estimates:
mean of x
80.54655
str(t.test(x))
List of 10
$ statistic : Named num 110
..- attr(*, "names")= chr "t"
$ parameter : Named num 35
..- attr(*, "names")= chr "df"
$ p.value : num 5.37e-46
$ conf.int : num [1:2] 79.1 82
..- attr(*, "conf.level")= num 0.95
$ estimate : Named num 80.5
..- attr(*, "names")= chr "mean of x"
$ null.value : Named num 0
..- attr(*, "names")= chr "mean"
$ stderr : num 0.735
$ alternative: chr "two.sided"
$ method : chr "One Sample t-test"
$ data.name : chr "x"
- attr(*, "class")= chr "htest"
t.test(x) $ conf.int[1]
[1] 79.05487
t.test(x) $ conf.int[2]
[1] 82.03822
置信水平的理解
#置信水平confidence level的理解
<- array(0,dim = c(5000,2))
ci for (i in 1:5000){
<- rnorm(36, 80, 5)
x <- c(t.test(x)$conf.int[1],t.test(x)$conf.int[2])
ci[i,]
}
head(ci)
[,1] [,2]
[1,] 77.92869 81.13243
[2,] 78.00351 81.05289
[3,] 78.66402 81.66217
[4,] 78.47628 81.56928
[5,] 78.20933 80.71063
[6,] 79.37287 82.78821
mean(1*((ci[,1]<80) & (ci[,2]>80)))
[1] 0.9538
本章习题
总体服从均值为15,标准差为2的正态分布。
从总体中抽取容量为50的个体,组成一个样本,利用该样本构造总体均值的95%的置信区间。重复该过程1000次,利用这1000个样本构造1000个95%的置信区间。计算这1000个置信区间中包含总体均值的比例是多少?
从总体中抽取容量为50的个体,组成一个样本,利用该样本构造总体均值的90%的置信区间。重复该过程1000次,利用这1000个样本构造1000个90%的置信区间。计算这1000个置信区间中包含总体均值的比例是多少?
作答要求:上传代码、以及console中的输出结果